如果tcpdump 的-v选项(详细打印选项) 被设置, 附加的信息将被显示. 比如:
(-v 选项一般还会打印出IP头部的TTL, ID, length, 以及fragmentation 域, 但在此例中, 都略过了(nt: 可理解为,简洁起见, 做了删减))
在第一行, sushi 请求wrl 从文件 21,11/12.195(nt: 格式在上面有描述)中, 自偏移24576字节处开始, 读取8192字节数据.
Wrl 回应读取成功; 由于第二行只是回应请求的开头片段, 所以只包含1472字节(其他的数据将在接着的reply片段中到来, 但这些数据包不会再有NFS
头, 甚至UDP头信息也为空(nt: 源和目的应该要有), 这将导致这些片段不能满足过滤条件, 从而没有被打印). -v 选项除了显示文件数据信息, 还会显示
附加显示文件属性信息: file type(文件类型, ''REG'' 表示普通文件), file mode(文件存取模式, 8进制表示的), uid 和gid(nt: 文件属主和
组属主), file size (文件大小).
如果-v 标志被多次重复给出(nt: 如-vv), tcpdump会显示更加详细的信息.
必须要注意的是, NFS 请求包中数据比较多, 如果tcpdump 的snaplen(nt: 抓取长度) 取太短将不能显示其详细信息. 可使用
'-s 192'来增加snaplen, 这可用以监测NFS应用的网络负载(nt: traffic).
NFS 的回应包并不严格的紧随之前相应的请求包(nt: RPC operation). 从而, tcpdump 会跟踪最近收到的一系列请求包, 再通过其
交换序号(nt: transaction ID)与相应请求包相匹配. 这可能产生一个问题, 如果回应包来得太迟, 超出tcpdump 对相应请求包的跟踪范围,
该回应包将不能被分析.
AFS 请求和回应
AFS(nt: Andrew 文件系统, Transarc , 未知, 需补充)请求和回应有如下的答应
src.sport > dst.dport: rx packet-type
src.sport > dst.dport: rx packet-type service call call-name args
src.sport > dst.dport: rx packet-type service reply call-name args
elvis.7001 > pike.afsfs:
rx data fs call rename old fid 536876964/1/1 ".newsrc.new"
new fid 536876964/1/1 ".newsrc"
pike.afsfs > elvis.7001: rx data fs reply rename
在第一行, 主机elvis 向pike 发送了一个RX数据包.
这是一个对于文件服务的请求数据包(nt: RX data packet, 发送数据包 , 可理解为发送包过去, 从而请求对方的服务), 这也是一个RPC
调用的开始(nt: RPC, remote procedure call). 此RPC 请求pike 执行rename(nt: 重命名) 操作, 并指定了相关的参数:
原目录描述符为536876964/1/1, 原文件名为 '.newsrc.new', 新目录描述符为536876964/1/1, 新文件名为 '.newsrc'.
主机pike 对此rename操作的RPC请求作了回应(回应表示rename操作成功, 因为回应的是包含数据内容的包而不是异常包).
一般来说, 所有的'AFS RPC'请求被显示时, 会被冠以一个名字(nt: 即decode, 解码), 这个名字往往就是RPC请求的操作名.
并且, 这些RPC请求的部分参数在显示时, 也会被冠以一个名字(nt | rt: 即decode, 解码, 一般来说也是取名也很直接, 比如,
一个interesting 参数, 显示的时候就会直接是'interesting', 含义拗口, 需再翻).
这种显示格式的设计初衷为'一看就懂', 但对于不熟悉AFS 和 RX 工作原理的人可能不是很
有用(nt: 还是不用管, 书面吓吓你的, 往下看就行).
如果 -v(详细)标志被重复给出(nt: 如-vv), tcpdump 会打印出确认包(nt: 可理解为, 与应答包有区别的包)以及附加头部信息
(nt: 可理解为, 所有包, 而不仅仅是确认包的附加头部信息), 比如, RX call ID(请求包中'请求调用'的ID),
call number('请求调用'的编号), sequence number(nt: 包顺序号),
serial number(nt | rt: 可理解为与包中数据相关的另一个顺信号, 具体含义需补充), 请求包的标识. (nt: 接下来一段为重复描述,
所以略去了), 此外确认包中的MTU协商信息也会被打印出来(nt: 确认包为相对于请求包的确认包, Maximum Transmission Unit, 最大传输单元).
如果 -v 选项被重复了三次(nt: 如-vvv), 那么AFS应用类型数据包的'安全索引'('security index')以及'服务索引'('service id')将会
被打印.
对于表示异常的数据包(nt: abort packet, 可理解为, 此包就是用来通知接受者某种异常已发生), tcpdump 会打印出错误号(error codes).
但对于Ubik beacon packets(nt: Ubik 灯塔指示包, Ubik可理解为特殊的通信协议, beacon packets, 灯塔数据包, 可理解为指明通信中
关键信息的一些数据包), 错误号不会被打印, 因为对于Ubik 协议, 异常数据包不是表示错误, 相反却是表示一种肯定应答(nt: 即, yes vote).
AFS 请求数据量大, 参数也多, 所以要求tcpdump的 snaplen 比较大, 一般可通过启动tcpdump时设置选项'-s 256' 来增大snaplen, 以
监测AFS 应用通信负载.
AFS 回应包并不显示标识RPC 属于何种远程调用. 从而, tcpdump 会跟踪最近一段时间内的请求包, 并通过call number(调用编号), service ID
(服务索引) 来匹配收到的回应包. 如果回应包不是针对最近一段时间内的请求包, tcpdump将无法解析该包.
KIP AppleTalk协议
(nt | rt: DDP in UDP可理解为, DDP, The AppleTalk Data Delivery Protocol,
相当于支持KIP AppleTalk协议栈的网络层协议, 而DDP 本身又是通过UDP来传输的,
即在UDP 上实现的用于其他网络的网络层,KIP AppleTalk是苹果公司开发的整套网络协议栈).
AppleTalk DDP 数据包被封装在UDP数据包中, 其解封装(nt: 相当于解码)和相应信息的转储也遵循DDP 包规则.
(nt:encapsulate, 封装, 相当于编码, de-encapsulate, 解封装, 相当于解码, dump, 转储, 通常就是指对其信息进行打印).
/etc/atalk.names 文件中包含了AppleTalk 网络和节点的数字标识到名称的对应关系. 其文件格式通常如下所示:
number name
1.254 ether
16.1 icsd-net
1.254.110 ace
头两行表示有两个AppleTalk 网络. 第三行给出了特定网络上的主机(一个主机会用3个字节来标识,
而一个网络的标识通常只有两个字节, 这也是两者标识的主要区别)(nt: 1.254.110 可理解为ether网络上的ace主机).
标识与其对应的名字之间必须要用空白分开. 除了以上内容, /etc/atalk.names中还包含空行以及注释行(以'#'开始的行).
AppleTalk 完整网络地址将以如下格式显示:
net.host.port
以下为一段具体显示:
(如果/etc/atalk.names 文件不存在, 或者没有相应AppleTalk 主机/网络的条目, 数据包的网络地址将以数字形式显示).
在第一行中, 网络144.1上的节点209通过2端口,向网络icsd-net上监听在220端口的112节点发送了一个NBP应用数据包
(nt | rt: NBP, name binding protocol, 名称绑定协议, 从数据来看, NBP服务器会在端口2提供此服务.
'DDP port 2' 可理解为'DDP 对应传输层的端口2', DDP本身没有端口的概念, 这点未确定, 需补充).
第二行与第一行类似, 只是源的全部地址可用'office'进行标识.
第三行表示: jssmag网络上的149节点通过235向icsd-net网络上的所有节点的2端口(NBP端口)发送了数据包.(需要注意的是,
在AppleTalk 网络中如果地址中没有节点, 则表示广播地址, 从而节点标识和网络标识最好在/etc/atalk.names有所区别.
nt: 否则一个标识x.port 无法确定x是指一个网络上所有主机的port口还是指定主机x的port口).
tcpdump 可解析NBP (名称绑定协议) and ATP (AppleTalk传输协议)数据包, 对于其他应用层的协议, 只会打印出相应协议名字(
如果此协议没有注册一个通用名字, 只会打印其协议号)以及数据包的大小.
NBP 数据包会按照如下格式显示:
第一行表示: 网络icsd-net 中的节点112 通过220端口向网络jssmag 中所有节点的端口2发送了对'LaserWriter'的名称查询请求(nt:
此处名称可理解为一个资源的名称, 比如打印机). 此查询请求的序列号为190.
第二行表示: 网络jssmag 中的节点209 通过2端口向icsd-net.112节点的端口220进行了回应: 我有'LaserWriter'资源, 其资源名称
为'RM1140', 并且在端口250上提供改资源的服务. 此回应的序列号为190, 对应之前查询的序列号.
第三行也是对第一行请求的回应: 节点techpit 通过2端口向icsd-net.112节点的端口220进行了回应:我有'LaserWriter'资源, 其资源名称
为'techpit', 并且在端口186上提供改资源的服务. 此回应的序列号为190, 对应之前查询的序列号.
ATP 数据包的显示格式如下:
第一行表示节点 Jssmag.209 向节点helios 发送了一个会话编号为12266的请求包, 请求helios
回应8个数据包(这8个数据包的顺序号为0-7(nt: 顺序号与会话编号不同, 后者为一次完整传输的编号,
前者为该传输中每个数据包的编号. transaction, 会话, 通常也被叫做传输)). 行尾的16进制数字表示
该请求包中'userdata'域的值(nt: 从下文来看, 这并没有把所有用户数据都打印出来 ).
Helios 回应了8个512字节的数据包. 跟在会话编号(nt: 12266)后的数字表示该数据包在该会话中的顺序号.
括号中的数字表示该数据包中数据的大小, 这不包括atp 的头部. 在顺序号为7数据包(第8行)外带了一个'*'号,
表示该数据包的EOM 标志被设置了.(nt: EOM, End Of Media, 可理解为, 表示一次会话的数据回应完毕).
接下来的第9行表示, Jssmag.209 又向helios 提出了请求: 顺序号为3以及5的数据包请重新传送. Helios 收到这个
请求后重新发送了这个两个数据包, jssmag.209 再次收到这两个数据包之后, 主动结束(release)了此会话.
在最后一行, jssmag.209 向helios 发送了开始下一次会话的请求包. 请求包中的'*'表示该包的XO 标志没有被设置.
(nt: XO, exactly once, 可理解为在该会话中, 数据包在接受方只被精确地处理一次, 就算对方重复传送了该数据包,
接收方也只会处理一次, 这需要用到特别设计的数据包接收和处理机制).
IP 数据包破碎
(nt: 指把一个IP数据包分成多个IP数据包)
碎片IP数据包(nt: 即一个大的IP数据包破碎后生成的小IP数据包)有如下两种显示格式.
(frag id:size@offset+)
(frag id:size@offset)
(第一种格式表示, 此碎片之后还有后续碎片. 第二种格式表示, 此碎片为最后一个碎片.)
id 表示破碎编号(nt: 从下文来看, 会为每个要破碎的大IP包分配一个破碎编号, 以便区分每个小碎片是否由同一数据包破碎而来).
size 表示此碎片的大小 , 不包含碎片头部数据. offset表示此碎片所含数据在原始整个IP包中的偏移((nt: 从下文来看,
一个IP数据包是作为一个整体被破碎的, 包括头和数据, 而不只是数据被分割).
每个碎片都会使tcpdump产生相应的输出打印. 第一个碎片包含了高层协议的头数据(nt:从下文来看, 被破碎IP数据包中相应tcp头以及
IP头都放在了第一个碎片中 ), 从而tcpdump会针对第一个碎片显示这些信息, 并接着显示此碎片本身的信息. 其后的一些碎片并不包含
高层协议头信息, 从而只会在显示源和目的之后显示碎片本身的信息. 以下有一个例子: 这是一个从arizona.edu 到lbl-rtsg.arpa
途经CSNET网络(nt: CSNET connection 可理解为建立在CSNET 网络上的连接)的ftp应用通信片段:
arizona.ftp-data > rtsg.1170: . 1024:1332(308) ack 1 win 4096 (frag 595a:328@0+)
arizona > rtsg: (frag 595a:204@328)
rtsg.1170 > arizona.ftp-data: . ack 1536 win 2560
有几点值得注意:
第一, 第二行的打印中, 地址后面没有端口号.
这是因为TCP协议信息都放到了第一个碎片中, 当显示第二个碎片时, 我们无法知道此碎片所对应TCP包的顺序号.
第二, 从第一行的信息中, 可以发现arizona需要向rtsg发送308字节的用户数据, 而事实是, 相应IP包经破碎后会总共产生512字节
数据(第一个碎片包含308字节的数据, 第二个碎片包含204个字节的数据, 这超过了308字节). 如果你在查找数据包的顺序号空间中的
一些空洞(nt: hole,空洞, 指数据包之间的顺序号没有上下衔接上), 512这个数据就足够使你迷茫一阵(nt: 其实只要关注308就行,
不必关注破碎后的数据总量).