采用Cache后,RAID10和RAID5性能比较

发布时间:2020-03-23编辑:脚本学堂
采用Cache后,RAID10和RAID5性能比较

     根据经验:小io的数据库类型操作,如ERP等应用,建议采用RAID10;而大型文件存储,数据仓库,如医疗PACS系统、视频编辑系统则从空间利用的角度,建议采用RAID5。下面请看详细的性能对比:
 
    为了方便对比,这里拿同样多驱动器的磁盘来做对比,RAID5选择3D+1P的RAID方案,RAID10选择2D+2D的Raid方案,分别如图:
 查看大图
    那么,这里分析如下三个过程:读,连续写,随机写。但是,在介绍这三个过程之前,这里需要介绍另外一个磁盘阵列中的重要概念:cache。
 
    磁盘读写速度的关键之一:Cache   
    cache技术最近几年,在磁盘存储技术上,发展的非常迅速,作为高端存储,cache已经是整个存储的核心所在,就是中低端存储,也有很大的cache存在,包括最简单的RAID卡,一般都包含有几十,甚至几百兆的RAID cache。
 
    cache的主要作用是什么呢?作为缓存,cache的作用具体体现在读与写两个不同的方面:作为写,一般存储阵列只要求数据写到cache就算完成了写操作,当写cache的数据积累到一定程度,阵列才把数据刷到磁盘,可以实现批量的写入。所以,阵列的写是非常快速的。至于cache数据的保护,一般都依赖于镜相与电池(或者是UPS)。
 
    cache在读数据方面的作用一样不可忽视,因为如果所需要读取的数据能在cache中命中的话,将大大减少磁盘寻道所需要的时间。因为磁盘从开始寻道到找到数据,一般都在6ms以上,而这个时间,对于那些密集型I/O的应用可能不是太理想。但是,如果能在cache保存的数据中命中,一般响应时间则可以缩短在1ms以内。
 
    不要迷信存储厂商的IOPS(每秒的io数)数据,他们可能全部在cache命中的基础上做到的,但是实际上,你的cache命中率可能只有10%。
 
    介绍完cache,我们就可以解释RAID5与RAID10在不同的模式下,工作效率问题了,那么我们来分别分析读操作、连续写和离散写三方面的问题。

    读操作方面的性能差异
    如上文的介绍,磁盘阵列读操作的关键更多的体现在cache的命中率上。所以,RAID5和RAID10在读数据上面,它们基本是没有差别的,除非是读的数据能影响cache命中率,导致命中率不一样。
     查看大图
 
    连续写方面的性能差异   
    连续写的过程,一般表示写入连续的大批量的数据,如媒体数据流,很大的文件等等。连续写操作大多数产生于医疗PACS系统、高教图书馆系统、视频编辑系统等等应用环境下。
 
    根据经验,在连续写操作过程,如果有写cache存在,并且算法没有问题的话,RAID5比RAID10甚至会更好一些,虽然也许并没有太大的差别。(这里要假定存储有一定大小足够的写cache,而且计算校验的cpu不会出现瓶颈)。
 
    因为这个时候的RAID校验是在cache中完成,如4块盘的RAID5,可以先在内存中计算好校验,同时写入3个数据+1个校验。而RAID10只能同时写入2个数据+2个镜相。
     查看大图
     如上图所示,4块盘的RAID5可以在同时间写入1、2、3到cache,并且在cache计算好校验之后,这里假定是6(实际的校验计算并不是这样的,这里仅仅是假设),同时把三个数据写到磁盘。而4块盘的RAID10不管cache是否存在,写的时候,都是同时写2个数据与2个镜相。
 
    根据前面对缓存原理的介绍,写cache是可以缓存写操作的,等到缓存写数据积累到一定时期再写到磁盘。但是,写到磁盘阵列的过程是迟早也要发生的,所以RAID5与RAID10在连续写的情况下,从缓存到磁盘的写操作速度会有较小的区别。不过,如果不是连续性的强连续写,只要不达到磁盘的写极限,差别并不是太大。

    离散写方面的性能差异
    这里可能会较难理解,但是,这一部分也是最重要的部分。企业中的绝大部分数据库应用,如ERP系统等等在数据写入的时候其实都是离散写。
 
    例如oracle 数据库每次写一个数据块的数据,如8K;由于每次写入的量不是很大,而且写入的次数非常频繁,因此联机日志看起来会像是连续写。但是因为不保证能够添满RAID5的一个条带(保证每张盘都能写入),所以很多时候更加偏向于离散写入。
 查看大图

     从上图看一下离散写的时候,RAID5与RAID10工作方式有什么不同。如上图:我们假定要把一个数字2变成数字4,那么对于RAID5,实际发生了4次io:先读出2与校验6,可能发生读命中然后在cache中计算新的校验写入新的数字4与新的校验8。
 
    如上图可以看到:对于RAID10,同样的单个操作,最终RAID10只需要2个io,而RAID5需要4个io。这里忽略了RAID5在那两个读操作的时候,可能会发生读命中操作的情况。也就是说,如果需要读取的数据已经在cache中,可能是不需要4个io的。这也证明了cache对RAID5 的重要性,不仅仅是计算校验需要,而且对性能的提升尤为重要。有人曾经测试过,在RAID5的阵列中,如果关闭写cache,RAID5的性能将差很多倍。
 
    当然,并不是说cache对RAID10就不重要了,因为写缓冲,读命中等,都是提高速度的关键所在,不过的是,RAID10对cache的依赖性没有RAID5那么明显而已。
 
    到这里,大家应当也大致明白了RAID5与RAID10的原理与差别了,一般来说,象小io的数据库类型操作,建议采用RAID10,而大型文件存储,数据仓库,则从空间利用的角度,可以采用RAID5。