表结构如下,文章只有690篇。
其中有个标签的tid是135,查询标签tid是135的文章列表。
690篇文章,用以下的语句查询,奇慢:
其中这条速度很快:
查询结果是五篇文章,id为428,429,430,431,432
用下面sql来查文章也很快:
解决方法:
其它解决方法:(举例)
为了节省篇幅,省略了输出内容,下同。
67 rows in set (12.00 sec)
只有67行数据返回,却花了12秒,而系统中可能同时会有很多这样的查询,系统肯定扛不住。用desc看一下(注:explain也可)
可以看出,在执行此查询时会扫描两百多万行,难道是没有创建索引吗,看一下
mysql>show index from abc_number_phone;
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| abc_number_phone | 0 | PRIMARY | 1 | number_phone_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 0 | phone | 1 | phone | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 0 | phone | 2 | number_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | number_id | 1 | number_id | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | created_by | 1 | created_by | A | 36879 | NULL | NULL | | BTREE | | |
| abc_number_phone | 1 | modified_by | 1 | modified_by | A | 36879 | NULL | NULL | YES | BTREE | | |
+------------------+------------+-------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
6 rows in set (0.06 sec)
mysql>show index from abc_number_prop;
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| abc_number_prop | 0 | PRIMARY | 1 | number_prop_id | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | number_id | 1 | number_id | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | created_by | 1 | created_by | A | 311268 | NULL | NULL | | BTREE | | |
| abc_number_prop | 1 | modified_by | 1 | modified_by | A | 311268 | NULL | NULL | YES | BTREE | | |
+-----------------+------------+-------------+--------------+----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
4 rows in set (0.15 sec)
从上面的输出可以看出,这两张表在number_id字段上创建了索引的。
看看子查询本身有没有问题。
没有问题,只需要扫描几行数据,索引起作用了。
查询出来看看:
直接把子查询得到的数据放到上面的查询中
速度也快,看来MySQL在处理子查询的时候是不够好。我在MySQL 5.1.42 和 MySQL 5.5.19 都进行了尝试,都有这个问题。
搜索了一下网络,发现很多人都遇到过这个问题:
参考资料1:使用连接(JOIN)来代替子查询(Sub-Queries) mysql优化系列记录
http://blog.csdn.net/hongsejiaozhu/article/details/1876181
参考资料2:网站开发日记(14)-mysql子查询和嵌套查询优化
http://dodomail.iteye.com/blog/250199
根据网上这些资料的建议,改用join来试试。
修改前:
修改后:
select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839';
mysql> select a.* from abc_number_prop a inner join abc_number_phone b on a.number_id = b.number_id where phone = '82306839';
67 rows in set (0.00 sec)
效果不错,查询所用时间几乎为0。看一下MySQL是怎么执行这个查询的
小结:当子查询速度慢时,可用JOIN来改写一下该查询来进行优化。
网上也有文章说,使用JOIN语句的查询不一定总比使用子查询的语句快。
参考资料3:改变了对Mysql子查询的看法
http://hi.baidu.com/yzx110/blog/item/e694f536f92075360b55a92b.html
mysql手册也提到过,具体的原文在mysql文档的这个章节:
I.3. Restrictions on Subqueries
13.2.8. Subquery Syntax
摘抄:
1)关于使用IN的子查询:
Subquery optimization for IN is not as effective as for the = operator or for IN(value_list) constructs.
A typical case for poor IN subquery performance is when the subquery returns a small number of rows but the outer query returns a large number of rows to be compared to the subquery result.
The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated subquery. Consider the following statement that uses an uncorrelated subquery:
SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);
The optimizer rewrites the statement to a correlated subquery:
SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);
If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.
An implication is that an IN subquery can be much slower than a query written using an IN(value_list) construct that lists the same values that the subquery would return.
2)关于把子查询转换成join的:
The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a subquery can be executed more efficiently if you rewrite it as a join.
An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join. Example:
SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);
That statement can be rewritten as follows:
SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;
But in this case, the join requires an extra DISTINCT operation and is not more efficient than the subquery
您可能感兴趣的文章:
mysql子查询的实例总结
mysql多表子查询与左连接的代码
mysql子查询使用EXISTS命令的例子
mysql子查询中EXISTS用法的例子
mysql子查询的五种方式
mysql 子查询与join性能对比
mysql子查询的用法举例
mysql update实现子查询的实例分享